J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

FYJC TERMINAL TEST - 03

DURATION - 2 HR

MARKS - 50

Q1. (A) Attempt ANY THREE OF THE FOLLOWING

- 01. Find k if the equations are consistent ky = x + 1; 2x - 3y + 5 = 0, 3x + 2y + 1 = 0
- 02. If A.M. of two numbers exceeds their G.M. by 1 and their H.M. by $^{9}\!/_{5}$, find the numbers

03. Find sum of
$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 2} + \frac{1^3 + 2^3 + 3^3}{1 + 2 + 3} + \dots$$

04. Find square root of : $2(1 - \sqrt{3}i)$

(B) Attempt ANY ONE OF THE FOLLOWING

01. Prove without expanding as far as possible

 $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$

02. Prove without expansion

11	4	10		5	2	3
2	7	6	= 3	11	5	2
5	1	4		10	4	6

Q2. (A) Attempt ANY TWO OF THE FOLLOWING

- 01. find the equation of the line so that the line segment intercepted between the axes is divided by the point P(-5,4) internally in the ratio 1:2
- 02. Find points on the line y = x + 1 whose distance from 4x 3y + 20 = 0 is 5 units
- 03. Find the angle subtended by the line segment PQ at the origin where P = (1, $\sqrt{3}$) & Q = ($\sqrt{3}$,1)

(06)

(09)

(04)

(B) Attempt ANY TWO OF THE FOLLOWING

01. find the acute angle θ satisfying : $4\sin^2\theta - 2(\sqrt{3} + 1)\sin\theta + \sqrt{3} = 0$

02. Prove :
$$\frac{\csc(90 - A) \cdot \sin(180 - A) \cdot \cot(360 - A)}{\sec(180 + A) \cdot \tan(90 + A) \cdot \sin(-A)} = 1$$

03. if sin A = $\frac{4}{5}$, $\frac{\pi}{2} < A < \pi$ and cos B = $\frac{5}{13}$, $\frac{3\pi}{2} < B < 2\pi$. find sin (A - B)

Q3. (A) Attempt ANY ONE OF THE FOLLOWING

01. Four digit number (without repetition) is to be formed using digits 1 – 9 in all possible ways . Find how many of them are

a) greater than 4000 b) divisible by 2

- 02. Find the number of all arrangement of the letters of the word 'TRIANGLE'
 - a) How many of them begin with T and end with E
 - b) In how many of them do the vowels occupy the odd places
 - c) in how many of them do the vowels occupy second , third and fourth places

(B) Attempt ANY THREE OF THE FOLLOWING

01. Calculate the quartile deviation for the following data

CI	0 - 10	10 – 20	20 – 30	30 - 40	40 - 50
Frequency	6	25	36	20	13

02. Calculate the mean deviation from the median . Also find the coefficient of MD

CI	0 - 10	10 - 20	20 – 30	30 - 40	40 - 50
Frequency	5	25	25	18	7

03. Solve: $\log_{\sqrt{3}} x + \log_{3} x + \log_{\sqrt{27}} x = 11$

04. if log $\left(\frac{x-y}{4}\right)$ = log \sqrt{x} + log \sqrt{y} , then show that $(x + y)^2$ = 20xy

Q4. (A) Attempt ANY TWO OF THE FOLLOWING

01. Find SD for the following data : 15, 16, 18, 18, 19, 20, 20, 21, 21, 22

(06)

(04)

(09)

(06)

02. Find Bowley's coefficient of skewness for the following data

03. For a moderately skewed distribution

Mean = 200 ; median = 198.4 , SD = 16 . Find mode and the Karl Pearson's coefficient of skewness (SKp)

(B) Attempt ANY ONE OF THE FOLLOWING

01. For the following data find the age above which we have the oldest 20% of persons

Age	Below 35	35 – 50	50 - 65	65 - 80	Above 80
Frequency	8	22	25	17	8

02. following is the distribution of age of 500 workers , find the percentage of workers whose age is more than 45 years

Age	20 - 30	30 - 40	40 - 50	50 - 60
No of workers	80	160	180	80

- (C) Attempt ANY ONE OF THE FOLLOWING
- 01. Find n , ${}^{n}P_{3}$: ${}^{n}P_{6}$ = 1:210
- 02. the first four moments about 4 are 1, 4, 10, 46. Find Personian's coefficients of kurtosis

(03)

(03)